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Abstract:- The threat of climate change and diminishing fossil fuels demands nothing short of an energy 

revolution, a transformation which is already underway as renewable energy markets exhibit enormous and 

steady growth. This paper presents design of optimal control schemes for Wind Energy Conversion Systems 

(WECS) based on a time scale technique. The dynamics governing the mechanical components of a variable 

speed wind turbine are decoupled to bring about model order reduction, facilitating computationally efficient 

control schemes. Linear Quadratic Regulators (LQR) and Linear Quadratic Gaussian (LQG) controllers for 

deterministic and stochastic WECS models are discussed at length. Comparisons were made between 

controllers for the reduced order and full order systems. The results manifest the effectiveness of the proposed 

method, which provides comparable control while reducing model order and increasing computational 

efficiency. 

 

 

Key-Words: - Linear Quadratic Gaussian Control, Linear Quadratic Regulator, Time Scales, Wind Energy 

Conversion Systems. 

 

1 Introduction 
In the last decade, the need to exploit renewable 

energy resources has been provided an impetus, by 

many governing bodies through favorable policy 

making and investment. One of the renewable 

energy sources which has grown significantly over 

the last few decades and is still growing in leaps and 

bounds is wind energy [1], [2]. Fig.1 shows that the 

wind turbine capacity worldwide has grown 

exponentially from 1996 to 2011 with the global 

cumulative wind capacity reaching 250,000MW by 

the end of 2011 [3].  

 
Fig.1: Development of global wind capacity from 

1996 to 2011 [3]. 

 

This rapid growth has not only been stimulated by 

financial support from various governments, but 

also from private investors. As wind turbines 

increase in size and power, the control mechanisms 

associated with them become more complex. 

Control systems help drive down operating costs 

and improve performance. In order to achieve very 

accurate predictions of loading conditions, its effect 

on system dynamics and performance, high order 

mathematical models are required. Higher order 

models, in turn, result in controller designs being 

computationally intensive and oftentimes time-

consuming due to numerical complexities. One of 

the ways to streamline controller design is to 

investigate methods which would facilitate model 

order reduction while retaining all the inherent 

system dynamics. A Wind Energy Conversion 

System (WECS) is an example of a physical system, 

with slow and fast dynamics arising from 

mechanical and electrical interactions respectively. 

Furthermore, there can be slow and fast subsystems 

within the mechanical interactions of a WECS. Such 

systems which evolve on different time scales are 

called singularly perturbed or time scale systems. 

The applications of singular perturbation and time 

scale theory spans diverse fields of engineering such 

as aerospace, electrical, chemical and biological 

systems [4], [5]. 

Conventional modeling methods reported in 

literature neglect the fast dynamics, for WECS 

models characterized with time scale behavior. 

There are numerous such instances where this 
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approach is adopted. Rawn et. al.  [6] consider a two 

mass model of a WECS and equate the fast 

dynamics to zero under the assumption that the 

faster states of the system are stable and settle to 

steady-state values.  A similar assumption to obtain 

quasi steady state solutions, by neglecting the fast 

dynamics is seen in [7]. On the same lines [8], [9] 

and [10] neglect the fast states to reduce a higher 

order WECS model. Even though neglecting the fast 

dynamics facilitates ease of controller design, the 

solutions obtained from such a reduced order model 

do not satisfy all the boundary conditions of the 

original system. Certain systems become unstable 

when its fast dynamics are neglected [11].  

This paper investigates the time scale method to 

enable model order reduction and design of a 

computationally inexpensive controller for WECS, 

by separating the original system into slow and fast 

subsystems. This method preserves the system 

dynamics in the process. Nguyen et. al. in [12], [13] 

investigated the time scale method for WECS where 

the dynamics of the original system was decoupled 

into a ‘slow’ mechanical subsystem and a ‘fast’ 

electrical subsystem. Here, the mechanical 

interactions within a WECS are analyzed which are 

further separated into slow and fast subsystems 

depending on the moment of inertia of the turbine 

rotor and generator. 

This paper is organized as follows: Section 2 

presents the dynamic model of a WECS. Section 3 

discusses the time scale method for a deterministic 

WECS in which the full order model is decoupled 

into reduced order slow and fast subsystems. 

Section 4 deals with the design of a Linear 

Quadratic Regulator (LQR) for the reduced order 

subsystems. The LQR control is also applied to the 

nonlinear WECS model. In Section 5, a Linear 

Quadratic Gaussian (LQG) control is designed for a 

stochastic WECS using the time scale approach. 

Section 6 presents the simulation results for the full 

order and reduced order optimal control and a 

comparison between them is provided. 

 

 

2 WECS Dynamics 
WECS transforms the kinetic energy of the wind 

into electrical energy. The wind turbine rotor serves 

as the transducer which harvests this wind energy. 

In this paper, the main focus is on the aerodynamics 

and the drive train dynamics of the wind energy 

system. This research confines itself to the time 

scale behavior within the mechanical interactions of 

the WECS. The schematic of a variable speed wind 

turbine is shown in Fig. 2[14]. 

 
 

 

Fig.2: Schematic of the WECS [14]. 

 

The moments of inertia of the turbine rotor and 

generator are represented by rJ and gJ , respectively. 

The two masses in the model are connected by a 

flexible shaft characterized by stiffness 
s

K and 

damping coefficient 
s

D [15]. The flexible shaft is 

considered as a torsion spring connected between 

the masses. An ideal gear box is assumed with a 

gear ratio
gN that relates the speed of the turbine 

rotor to that of the generator. 

 

 

2.1  Aerodynamics 
The kinetic energy of the wind stream is converted 

to mechanical energy by the turbine rotor blades 

which provide the aerodynamic torque, 

 ,r

r

r

P
T

w
  (1) 

 where
r

w is the angular velocity of the rotor and
r

P  is 

the aerodynamic power given by, 

 
2 31

( ),
2

r p
P R v C 

 
(2) 

where  is the air density, R is the blade wing 

radius, v is the wind speed and ( )
p

C  is the power 

coefficient which is a function of the tip speed 

ratio . It is defined as the ratio of the wind speed to 

the blade tip speed [14], [16], [17], [18], 

 
,

r

v

Rw
   (3) 

where v is the wind speed, R is the blade wing radius 

and rw is the angular velocity of the rotor. The 

power coefficient ( )
p

C  is defined as [13],  
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0.035.

t


   (5) 

 

2.2  Drive Train Dynamics 
The drive train system is approximated by a two-

mass spring and damper model [7], [14], [19]. This 

model yields a more accurate response of the wind 

turbine’s dynamic behavior during fluctuating wind 

conditions and results in a more accurate prediction 

of the impact on the power system  [20], [21].  

The mechanical model is driven by two torques, 

one from the turbine blades rT and the other from 

the electromagnetic torque gT  exerted by the 

interacting fields of the generator. These torques 

cause the rotor and the generator to move with 

angular velocities 
r

w and
g

w  respectively. The 

equations of motion for the drive train system are 

obtained by summing the torques acting on each of 

the masses
r

J and
g

J  [22]. 

( ( ), ( ))1
   ( ) ,

   ,

1
   ( ) ,

gr r
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diff r
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s diff gs
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w
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w w T

J N N N







 
    

 
 

 

 
    

 
 

 
(6) 

where
diff r g    is the difference between the 

angular displacements of turbine rotor and generator 

respectively.  

 

 

2.3  Non-linear Model of WECS 
The nonlinear state space model of WECS is 

obtained by combining (1-6). Comparing the state-

space model to a nonlinear system representation 

( , ),fx x u  the state vector x , input vector u and 

output vector y are defined as, 

  

 

,

,
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r diff g
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x

u    

y

 
(7) 

In the WECS model, wind is a natural input to the 

system and since it cannot be controlled, for 

controller design purposes, only one control input 

(
g

T ) is considered. Wind turbine data [14] of a 

Vestas-v29 225KW wind turbine was used for 

simulations. 

 

 

2.4  Eigenvalues of WECS 
To understand system behavior, the nonlinear model 

(1- 6) was linearized about an operating point which 

was at the maximum power conversion efficiency. 

A wind speed of 11m/s was chosen for linearization. 

The eigenvalues obtained were: -0.090002, -7.0573 

+ 36.892i and -7.0573 - 36.892i. By comparing the 

eigenvalues, it is evident that the real eigenvalue (-

0.090002) is much smaller than the real part of the 

complex eigenvalues (-7.0573 ± 36.892i). Systems 

characterized by widely separated groups of 

eigenvalues exhibit time scale phenomena [11]. 

Thus the presence of one slowly varying state and 

two fast states can be inferred. This separation in the 

‘speed’ of the mechanical variables makes WECS a 

prime candidate for Time Scale Analysis [11].  

The slow dynamics in the system is attributed to 

the large inertia of the turbine rotor, while the fast 

dynamics to the relatively small inertia of the 

generator and poorly damped drive train dynamics. 

Since the nonlinear model is dependent on wind 

speed, linearization is carried out at various wind 

speeds and the eigenvalues at every wind speed 

indicated time scale behavior. Table 1 lists the 

eigenvalues corresponding to various wind speed 

values. 

 

Table 1: Eigenvalues of WECS at different wind 

speed conditions. 

Wind Input Eigenvalues 

v =14 m/s 

-7.0597 +36.8919i 

-7.0597 -36.8919i 

-0.1619 

v =16 m/s 

-7.0604 +36.8918i 

-7.0604 -36.8918i 

-0.1832 

v =18 m/s 

-7.0609 +36.8917i 

-7.0609 -36.8917i 

-0.1983 

v =20 m/s 

-7.0613 +36.8916i 

-7.0613 -36.8916i 

-0.2106 

v =22 m/s 

-7.0617 +36.8915i 

-7.0617 -36.8915i 

-0.2218 

 

 

3  Time Scale Analysis Of 

Deterministic WECS 
A brief description of the time scale method [11] is 

provided in this section. The general form of a linear 

singularly perturbed system is provided in (8),  
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11 12 11

21 22 21

1 1 2

2 1 2

   ,

,

x A x A x B u

x A x A x B u

 

 




 

(8) 

where 1x and 2x are the m- and n- dimensional state 

vectors, u is an r-dimensional control vector, 

matrices Aij and Bij are of appropriate dimensions 

and ɛ is the small parameter representing small time 

constants, masses, moments of inertias, resistances, 

inductances or capacitances which are responsible 

for increasing the order of the system  [11]. 

 
 

3.1  Decomposition of System Dynamics 
A two-stage linear transformation [11], given by  

  
1

2 1

,

,

s f

f

x x Mx

x x Lx

 

 
 

(9) 

is applied on the system in (8) to decouple it into 

independent slow and fast subsystems,  

 ( ) ( ) ( ),

( ) ( ) ( ),

s s s s

f f f f

x t A x t B u t

x t A x t B u t

 

 
 

(10) 

where,   

 
1 2

4 2

1 1 2

2 1

,

,

,

.

s

f

s

f

A A A L

A A LA

B B MLB MB

B B LB

 

 

  

 
 

(11) 

The subscripts ‘s’ and ‘f’ denote slow and fast states 

respectively. The matrices A1 to A4 and B1 to B2 are 

obtained from the equations in (8) as, 

 
1 11 2 12 1 11

21 22 21

3 4 2

, , ,

, , .

A A A A B B

A A B
A A B

  

  

  

 

(12) 

The variables L( n m ) and M( m n ) are solutions 

of the nonlinear Lyapunov-type equations, 

 

   

1 3 2 4

1 2 4 2 2

0,

0.

LA A LA L A L

A A L M M A LA A

   

    
 

(13) 

It is evident from (10) that the state variables 

sx and
fx can be solved independently of each other. 

The L and M matrices are iteratively calculated 

using the high accuracy Newton method  [23]. 

Newton’s algorithm converges quadratically in the 

neighborhood of the sought solution, at the rate of 
2( )

i

O  where i = 1, 2... imax. 
 

 

3.2 Application of Time Scale Method to 

WECS 
The nonlinear WECS model (1-6) was transformed 

into a linear singularly perturbed form as shown in 

(8). The small parameter was identified first, 

through a series of operations; such as scaling of 

differential equations and time scale trans-

formations. The time scale method was then applied 

to the WECS model, which was linearized about an 

operating point (as discussed in Section 2.4). The 

small parameter identified, was the ratio of the 

moment of inertia of the generator to the moment of 

inertia of the turbine rotor [24].  

A 3
rd

 order WECS model is reduced to two 

separate 1
st
 order and 2

nd
 order models. The reduced 

order slow and fast subsystems obtained are:  

 

0.0633 0 0 -0.0013

0 -0.2861 -0.1473 0

0 9678.8 -3.9345 -0.0054

r r

diff diff

g g

w w

u

w w

 



 

      
      
      
              
 

To ensure that the decomposed systems retain the 

slow and fast dynamics, the eigenvalues of the 

original system and the decomposed system were 

compared.  Table 2 lists the eigenvalues of full order 

and reduced order systems. The results confirm that 

the time scale method decouples the system 

dynamics perfectly (the values obtained were same 

to up to six decimal places).  
 

Table 2: Comparison of full order and reduced order 

eigenvalues 

Full Order Eigenvalues 

A 

eig(A) = -0.063321 

              -2.1103 + 37.714i 

              -2.1103 – 37.714i 

Reduced Order Eigenvalues 

s
A  

(Slow-subsystem) 
eig(

s
A ) = -0.063321 

f
A  

(Fast-subsystem) 

eig(
f

A )= -2.1103+37.714i 

                -2.1103– 37.714i 

 

 

4  Optimal Control Of Deterministic 

WECS Using Time Scale Analysis 
In general, an optimal controller provides the best 

possible performance with respect to a given 

performance index or cost function. When the 

performance index is quadratic, and the 

optimization is over an infinite horizon, the resulting 

optimal control law obtained by minimizing the cost 

function is called Linear Quadratic Regulator 

(LQR). Since optimal control laws guarantee 

infinite gain margins, minimum phase margins of 

60 and stability of closed loop systems, this theory 

finds numerous engineering applications [25], [26], 

[27]. In a WECS, when the wind turbine blades are 

f
A

 

f
B  

s
A  s

x  

f
x  

s
B  
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subjected to disturbances, for example, a gust of 

wind, it causes a perturbation to the states of the 

system. The objective of a LQR is to bring the 

perturbed states to zero.  It is assumed that all the 

states are measurable and the control signal is 

unconstrained for design purposes. The performance 

index is chosen to minimize the error between the 

perturbed state and the desired state (which is zero) 

for an infinite time period.  

Commonly, the standard LQR design for a full 

order WECS does not separate the slow and fast 

dynamics. This section discusses LQR design for a 

reduced order WECS. Here, control laws are 

implemented for the slow and fast subsystems 

separately. 

The slow subsystem 
sx which was defined in 

(10), has a performance index, 

 

0

1
( ) ( ) ( ) .

2
( )

T T

s s s s s s s

t

J t Q u t R u t  dtx x t



   
 

(14) 

where 
s

Q and
s

R are the weighting matrices for the 

slow subsystem. The control signal *
( )

s
u t  for the 

slow subsystem is calculated as:  

 1*
( ) ( ) ( ),

T

s s s s s s s
u t K x t R B P x t


   

 
(15) 

where
s

K is the regulator gain of the slow subsystem 

and 
s

P  is the solution of the slow algebraic Riccati 

(16), 

 1
0.

T T

s s s s s s s s s s
P A A P Q PB R B P


     (16) 

Similarly for the fast subsystem, the LQR control is 

calculated as, 

 1*
( ) ( ) ( ).

T

f f f f f f f
u t K z t R B P x t


   

 
(17) 

where
f

P  is the solution of the fast algebraic Riccati 

equation, 

 1
0.

T T

f f f f f f f f f f
P A A P Q P B R B P


   

 
(18) 

A block diagram describing LQR control design for 

the reduced order WECS is presented in Fig. 3. The 

feedback control is now a composite control *( )u t  

i.e. sum of slow control *
( )

s
u t and fast control *

( ).
f

u t  

 
Fig.3: LQR control design for reduced order linear 

WECS. 

The control action of the LQR was further 

investigated, where the composite control was 

studied for the original nonlinear WECS model. 

(Previously discussed scheme was implemented on 

the linear WECS model). The control scheme is 

depicted in Fig. 4. The states of the nonlinear 

WECS were simulated at nominal conditions of 

wind speed and control input (generator torque,
g

T ). 

At the point of linearization, the nominal states ( )x t  

were perturbed by a small amount ( )x t  and 

performance of the designed composite control was 

observed.  

 
Fig.4: Reduced order LQR control design for 

nonlinear WECS. 

 

 

5 Optimal Control Of Stochastic 

WECS Using Time Scale Approach 
In most cases of a variable speed wind turbine, it 

may not be possible to measure all the states of the 

system due to cost or feasibility constraints. 

Measurements that are available are bound to be 

corrupted by a certain level of noise. Also, 

fluctuations on the turbine blades, causes the states 

to be perturbed. To minimize such perturbations, a 

suitable controller has to be designed. In such 

situations, a Kalman filter is employed to get an 

accurate estimate of all the states of the system, 

which are then used to design a controller. The 

combined filter and regulator constitute a Linear 

Quadratic Gaussian (LQG) control. It is designed 

for controlling systems corrupted by additive white 

Gaussian noise, having incomplete state information 

and undergoing control subject to quadratic costs.  
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In this section, a time scale approach for solving 

the LQG control problem of a singularly perturbed, 

continuous-time, stochastic WECS system is 

presented.  This approach is based on a closed loop 

decomposition technique of the optimal filters and 

regulators. Firstly, an optimal Kalman filter is 

designed for a full order stochastic WECS, followed 

by its time scale decomposition. Then, by utilizing 

the dual relationship between Kalman filters and 

regulators, individual slow and fast regulators are 

designed. These combined filters and regulators 

constitute the reduced order Linear Quadratic 

Gaussian (LQG) control. 

 

 

5.1  Design of Optimal Kalman Filter for a 

Full-Order WECS 
Consider a linear, singularly perturbed, stochastic 

WECS system with a control input u, 

 1 1 1 2 2 1 1 1

2 3 1 4 2 2 2 1

1 1 2 2 2

     ,

  ,

      ,

x A x A x B u G w

x A x A x B u G w

y C x C x w



   

   

    

(19) 

and a performance index  J given by, 

 

0

1
lim  ,

f

f

t

T T

t
f t

J z Qz u Ru dt
t




  
    

  


 
(20) 

where z is the controlled output; Q ≥ 0, R ≥ 0 are the 

weighting matrices,
1x and 

2x are the state vectors,  

1

2

,

,

r

T

diff g

x w

x w



   

 

y is the system measurement which measures the 

generator speed
g

w , 
1A  to

4A , 
1

B  to
2

B ,
1

G  to 
2

G  and 

1
C  to 

2
C are constant matrices with appropriate 

dimensions,
1

w and
2

w  are the system Gaussian noise 

and measurement Gaussian noise respectively, with 

intensities 
1

0W  and 
2

0W   respectively.  

The optimal Kalman filter for the singularly 

perturbed WECS in (19) is obtained as: 

 
1 1 1 2 2 1 1

2 3 1 4 2 2 2

1 1 2 2

ˆ ˆ ˆ    ,

ˆ ˆ ˆ  ,

ˆ ˆ    ,

x A x A x B u F

x A x A x B u F

y C x C x



 



   

   

    

(21) 

where x̂ denotes the state estimates, is called the 

innovation process, 
1F and

2F are the optimal Kalman 

filter gains [23],  

  

 

1

1 1 1 2 2 2

1

2 2 1 3 2 2

,

.

T T

F F

T T

F F

F P C P C W

F P C P C W





 

 
 

(22) 

Matrices
1FP ,

2FP and
3FP  in (22) are solutions to the 

filter algebraic Riccati equation (ARE), 

 
1 0,T T

F F F FAP P A P SP GWG     (23) 

where,  

 
1 2 1 2

3 4 2 3

1
1

2

2

,  ,1 1 1

,  1

F F

F T

F F

T

A A P P

A P
A A P P

G

G S C W C
G

  





   
    
   
   

 
  
 
   

 
 

(24) 

5.2  Reduced Order LQG Control Design 

using Time Scale Approach 
The method for decomposing the optimal Kalman 

filter into independent, reduced order, slow and fast 

filters is presented in this section. The separate 

filters are such that both are driven by the system 

measurement instead of the innovation 

process . Decomposition of the optimal Kalman 

filter is based on exact decomposition of the 

singularly perturbed algebraic filter Riccati equation 

into slow and fast Riccati equations. A 

transformation T2 is applied to the global/full order 

Kalman filter to obtain the decomposed slow and 

fast filters. Then using the duality property that 

exists between linear optimal filters and regulators, 

the LQG control is formulated [23]. 

The non-singular transformation T2 is given as: 

  1 2 ,F F FP  2T
 (25) 

where
FP is the solution of (23), 

1F and
2F matrices 

are elements of the 
F matrix, 

 21 2

2 1

23 4

,
s

f

nF F T

F F F

nF F

I NM N
E E

M I

     
     

       

(26) 

where 
2 snI and 

2 fnI are the identity matrices of order 

2
sn  and 2

fn . The subscripts ‘
sn ’ and ‘

fn ’ denote 

the number of slow and fast states in the physical 

system. 
1FE and 

2FE are the permutation matrices  

defined as : 

1 2

0 0 0
0 0 0

0 0 0
0 0 0

, ,1
0 0 00 0 0

0 0 0
0 0 0

s
s

s
s

ff

f
f

n
n

n
n

F F

nn

n
n

I
I

I
I

E E
II

I
I



 
 

 
 

 
 

    
 

 
 

 
   
   

(27) 

and M & N are the solutions of the Chang’s 

decoupling equations: 

  

   

4 3 1 2

2 4 2 1 2

0,

0.

F F F F

F F F F F

T M T M T T M

T N T MT T T M N



 

   

    
 

(28) 

The matrices 
1FT to 

4FT are defined as: 

1 1 2 1 3 1 2 2

1 2

1 1 1 1 1 1 2 2

2 2 2 1 4 2 2 2

3 4

2 1 1 3 2 1 2 4

, ,

, .

T T T T

F FT T

T T T T

F FT T

A C W C A C W C
T T

GW G A GW G A

A C W C A C W C
T T

G W G A G W G A

    
    

      

    
    

     

 (29) 
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On applying transformation T2 to the filter’s state 

variables, 

 
1-

2

ˆ ˆ
,

ˆ ˆ

s T

f

x

x





   
   

  
2T

 
(30) 

the two independent, slow and fast Kalman filters 

are obtained as, 

  

 

1 2

1 2

ˆ ˆ  ,

ˆ ˆ ,

T

s F F sF s s s

T

f F F fF f f f

a a P B u F y

b b P B u F y

 

 

   

   
 

(31) 

where ˆ
s and ˆ

f are the slow and fast state 

estimates;
sFP and

fFP are the solutions of the slow 

and fast algebraic Riccati equations, 

 
1 4 3 2

1 4 3 2

0,

0.

sF F F sF F sF F sF

fF F F fF F fF F fF

P a a P a P a P

P b b P b P b P

   

   
 

(32) 

The algebraic Riccati equations are solved by 

Newton’s algorithm which is provided in the 

reference [23]. The other matrices in (32) are, 

 
 

 

1 2

1 2

3 4

1 2

4 2

3 4

,

,

F F

F F

F F

F F

F F

F F

a a
T T M

a a

b b
T MT

b b


 
  

 

 
  

 
 

 

(33) 

 
1 1

-

2 2

, .1 1 1 1

s s

T T

f f

F F B B

F F B B
   

 

       
       
       
       

-

2 2
T  T   (34) 

The optimal control in terms of the slow and fast 

Kalman filters is given by: 
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(35) 

where the slow and fast regulator gains
s

K and
f

K are 

defined as: 

 1( ) ,T T

s yK K R B P    2
T

 (36) 

where P is the solution of the algebraic Riccati 

equation 

 0.
T

PA A P Q PSP     (37) 

A block diagram is shown in Fig.5 which 

summarizes the LQG control with reduced order 

Kalman filter and regulator. The control signal fed 

back to the WECS system is a composite control 

signal or sum of slow and fast control. 

 
Fig.5: LQG control design of WECS with reduced 

order filter and regulator. 

6  Simulation Results 
All the controllers were designed in MATLAB

®
 and 

implemented in Simulink
®
. 

 
 

6.1 Results of LQR Control for Deterministic 

WECS 
The matrices

sA ,
sB ,

fA and
fB  for LQR control 

design are given in Section 3.2. The weighting 

matrices
s

Q ,
sR ,

f
Q and 

f
R were chosen such that they 

minimize the time taken by the states to attain their 

nominal values. These matrices were chosen from 

multiple iterations. A comparison between the full 

order and reduced order control of the linear WECS 

is provided in Fig. 6. It can be seen that the 

controller regulates all the states to zero, for both 

full order and reduced order cases. A detailed view 

of the states near the origin is shown in Fig. 7. The 

very close matching between the full order and 

reduced order LQR control manifests the 

effectiveness of the time scale method. Thus the 

proposed method provides almost the very same 

control action with less computational effort.  
 

 
Fig.6: LQR control – Comparison of the full order 

system and reduced order WECS. 
 

 
Fig.7: Detailed view of the LQR comparison plots 

near the origin. 
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The simulation results for LQR (with composite 

control) feedback to nonlinear WECS are provided 

in Fig. 8. The nominal solutions of the states are 

obtained by simulating the nonlinear model for wind 

speed of 11 m/s and generator torque of 2132 N-m. 

A pulse was applied to the wind speed input to 

perturb the nominal states of the system. The results 

indicate that the composite control action regulates 

the states of the nonlinear system to their 

corresponding nominal values. Fig. 8 shows that the 

system was perturbed at the 10 second mark, and the 

proposed controller brings the states back to the 

nominal values quickly. The dynamics of the state 

( )
diff

t (shaft displacement) indicates oscillations on 

application of the pulse, before the state was 

returned to its nominal value. For the generator 

speed state ( )
g

w t , the time taken to bring the system 

back to the nominal values is comparatively longer. 

This delay can be overcome by modifying the 

weighting matrices Q  and R . 

 

 
Fig.8: States and control of nonlinear WECS with 

composite LQR control. 

 

 

6.2 Results of LQG Control for Stochastic 

WECS 
The weighting matrices Q and R for the stochastic 

system were chosen in a similar way as for the 

deterministic case (Section 6.1). The process and 

measurement noise are assumed to be independent 

Gaussian noise with zero mean. The process noise, 

which is applied to the system states, could be on 

account of wind fluctuations on the turbine blades. 

While, measurement noise applied to the output 

state (generator speed) could be due to sudden 

changes in generator load conditions or high 

harmonic currents resulting from power electronics 

converters [28], [29]. For the simulations, the noise 

sources were chosen as ‘Random Number’ blocks 

from the Simulink
®
 library. In order to see the 

effects of Kalman filter, in the WECS system, the 

states corrupted with noise are compared to their 

corresponding Kalman estimates. The output signal 

is also compared to its estimate. The results are 

plotted in Fig. 9. It is seen that the Kalman filtering 

reduces the influence of noise on the system states 

and output and provides good estimation. 

 

 
Fig.9: States and output compared to their Kalman 

estimates. 

 

A comparison of the results between the full order 

and reduced order LQG control is provided in Fig. 

10. It is observed that LQG control regulates the 

states of the system to zero for both full order and 

reduced order controllers. A detailed view of the 

results near the origin is provided in Fig.11. 

 

 
Fig.10: Comparison of full order and reduced order 

LQG control. 
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Fig.11: Detailed view of LQG comparison plots. 

 

The closeness of the full order and the reduced order 

results indicate that comparable control can be 

achieved with the reduced order filters and 

regulators. The detailed view in Fig. 11 also shows 

that amplitudes of oscillation of the state estimates 

have been reduced by the implementation of the 

time scale design. 

 

 

7  Discussion 
A time scale analysis of the mechanical interactions 

of WECS was performed in this research. The prime 

objective was to develop a computationally less 

intensive controller scheme, which was brought 

about by the application of the time scales method 

to a higher order wind energy system. The method 

helped bring a 3
rd

 order WECS system and Kalman 

filter down to a 1
st
 order and a 2

nd
 order subsystem 

facilitating simpler optimal control designs. The 

simulation results for both deterministic and 

stochastic WECS, of a full order and a reduced 

order system, indicates that the performances match 

closely to that of the full order system. The reduced 

order LQR control was applied to a nonlinear 

WECS. From the simulation results it is evident that 

the proposed method does provide a comparable 

control even with the system perturbed.  

These results shed light on the effectiveness of 

the proposed methodology. 

 

 

8 Conclusion 
A time scale technique of the deterministic and 

stochastic WECS was proposed which led to 

decoupling of a full order system into independent 

slow and fast subsystems. The simulation results 

indicate that the performances of the full order 

system closely match that of the reduced order 

system. This shows that the strengths of this design 

approach can be exploited without loss of system 

dynamics. The time scale approach has important 

implications, especially when large model orders are 

used to describe a complete wind energy system 

(mechanical and electrical components). For real 

time applications, the decoupling of the full order 

system would bring about a reduction in on-line and 

off-line computational requirements. Also, the slow 

and fast controllers work in parallel and process 

information independently with their corresponding 

sampling rates (slow with slow sampling rate, fast 

with fast sampling rate). Moreover, a wind energy 

system designed with two controllers, for each of 

the slow and fast subsystems, is more reliable than a 

system with one controller in the event of a 

controller malfunction. 
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